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Abstract—The rising frequency of NASA mission launches 
has highlighted the need for improvements leading to faster 
delivery of mission software without sacrificing reliability. 
In April 1998 Jet Propulsion Laboratory (JPL) initiated the 
Mission Data System (MDS) project to rethink the mission 
software lifecycle⎯from early mission design to mission 
operation⎯and make changes to improve software 
architecture and software development processes. As a 
result, MDS has defined a unified flight, ground, and test 
data system architecture for space missions based on object-
oriented design, component architecture, and domain-
specific frameworks. This paper describes several 
architectural themes shaping the MDS design and how they 
help meet objectives for faster, better, cheaper mission 
software. 
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 1. INTRODUCTION 
JPL’s deep space missions tend to be one-of-a-kind, each 
with distinct science objectives, instruments, and mission 
plans. Until recently, these missions were spaced years 
apart, with little attention to software reuse, given the 
relatively rapid pace of computer technology and computer 
science. Also, since radiation-hardened flight computers 
remain years behind their commercial counterparts in speed 
and memory, flight software has typically been highly 
customized and tuned for each mission. Thus, when JPL 
launched six missions in six months between October 1998 
and March 1999, it wasn’t surprising that there was little 
software reuse among them, except in the ground system.  
 
However, despite the uniqueness of each mission, they each 
had to independently design and develop mechanisms for 

communication, commanding, attitude control, navigation, 
power management, fault protection, and many other 
standard tasks, yet there was no common architecture or 
frameworks for them to build upon. Clearly, in an era of 
monthly missions, this is an inefficient way to use software-
engineering resources. 
 
Another change affecting our approach to deep space 
mission software is the advent of high performance, 
commercially standard flight computing systems suitable 
for flight use. Sufficient capability now exists to justify 
investing a substantial part of the system resources to 
reusable designs and “off-the-shelf” components, which are 
typically not as efficient as customized code. This 
additional capability is also a timely boost to increased 
autonomy that new missions require as we move into an era 
of in situ exploration. 
 
 2. THE MISSION DATA SYSTEM PROJECT 
In order to use software-engineering resources more 
effectively and to sustain a quickened pace of missions, 
while supporting the steady advances required by new 
missions, JPL initiated a project in April 1998 to define and 
develop an advanced multi-mission architecture for an end-
to-end information system for deep-space missions. The 
system, named “Mission Data System” (MDS), addresses 
several institutional objectives: earlier collaboration of 
mission, system and software design; simpler, lower cost 
design, test, and operation; customer-controlled complexity; 
and evolvability to in situ exploration and other autonomous 
applications. JPL’s Telecommunication and Mission 
Operations Directorate (TMOD) manages the MDS project. 
  

3. THE  MDS VISION 
Software development for space missions is obviously part 
of a much larger endeavor, but software plays a central and 
increasingly important system role that must be reconciled 
with the overall systems engineering approach adopted by a 
project. 
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Software and systems engineering are highly interdependent 
for two reasons. First, software needs systems engineering 
products. It must know how things work. It needs to 
understand interfaces. And it has to honor the system 
engineer’s intentions. Second, software is essential to 
systems engineering. It largely determines the behavior and 
performance of a system. It manages the capabilities and 
resources of a system. And it presents one’s operational 
view of a system. 
 
To put it in another way, both systems engineering and 
software deal in the more abstract aspects of a system. 
These are issues that apply from the earliest conception of a 
mission until the last day of flight operation. They apply 
across all constituents of a project and to all elements of the 
environment affecting the system. Therefore, it is essential 
that systems and software share a common approach to 
defining, describing, developing, understanding, testing, 
operating, and visualizing what systems do. This is the 
fundamental vision and philosophy behind the MDS design: 
that software is part of and contributes substantially to a 
new systems engineering approach that seamlessly spans 
the entire project breadth and life cycle. 
 
This paper describes several architectural themes shaping 
the MDS design. These themes have been highlighted 
because they have broad impact on the design and because 
they differ from earlier practices. However, the themes are 
not novel ideas; they draw proven ideas from control 
systems, robotics, data networking, software engineering, 
and artificial intelligence. 
  
Although most of these themes have resulted from a desire 
to improve flight software⎯and have compelling examples 
there⎯they apply equally to ground software. Also, these 
themes apply equally to all kinds of robots, whether 
spacecraft or probes or rovers. 
 

4. ARCHITECTURAL THEMES 
Theme: Take an Architectural Approach 

Construct subsystems from architectural elements, not the 
other way around—It has been traditional in JPL missions 
to divide the work along at least five dimensions: flight—
ground—test, design—test—operations, engineering—
science, downlink—uplink, and subsystems (navigation—
power—propulsion—telecom, etc). With the work so 
compartmentalized, software engineers naturally applied 
their own customized solutions within each realm, resulting 
in minimal reuse and requiring many iterations at 
integrating the subsystems. The net result was always 
architecture constructed from subsystems. 
 
In MDS there is a quest to identify common problems and 
create common solutions that can then be tailored to 
particular problems. We refer to this collection of common 
solutions as the MDS framework. It provides shared core 
elements among different systems, eliminates redundant or 
conflicting developments within systems, and assures 
uniformity across the architecture in order to improve 
operability and robustness. In the spirit of DARPA’s 
Domain-Specific Software Architecture (DSSA) Project [1], 
the MDS project is designing a reference architecture, i.e., 
a software architecture for a family of applications in a 
domain. 
 
Object oriented analysis and design contribute to the 
architecture to some extent, but a fundamental driver in this 
approach has been the recognition that space system designs 
are always tightly coupled, despite best attempts. Highly 
constrained resources demand it. A key software role is to 
make this coupling manageable. Therefore, managing 
interactions is also a foundation of good design. For 
example, different activities in different subsystems issue 
commands that consume power, and they can potentially 
interfere with each other unless there is a coordination 
service that keeps track of available power and that has 
authority to control each device. Creating such a 
coordination service enables a cleaner simpler design 

Figure 1. In the traditional approach, subsystem teams worked in isolation and created individual solutions to 
shared problems. In the architectural approach they apply standard MDS frameworks and services. 
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because it controls interactions through a common service 
rather than through private subsystem-to-subsystem 
agreements, thereby decreasing the apparent coupling 
between subsystems. It similarly simplifies unit testing of 
subsystems. The net result from applying this approach is 
that subsystems get constructed from architectural elements, 
not the other way around. 
 
Theme: Ground-to-Flight Migration 

Migrate capability from ground to flight, when appropriate, 
to simplify operations—MDS takes a unified view of flight 
and ground tasks because of opportunity and need. With 
increasingly powerful flight processors the opportunity 
exists to migrate to the spacecraft (or rover) some functions 
that have traditionally been performed on the ground, 
thereby reducing the need for flight-ground communication. 
Such migration might occur well after launch, after ground 
operators have gained experience with the real spacecraft 
and have decided that some activities can be automated, 
without further human-in-the-loop control. Migration can 
involve using the same code in flight as on the ground, but 
frequently flight implementations are different because they 
exploit the immediacy of their interaction with the 
spacecraft. Nevertheless, uniformity in addressing other 
system elements permits these migrations to take place with 
minimal perturbation to the rest of the system.  
 
More importantly, the need for such migration exists in 
order to accomplish missions that must react quickly to 
events, without earth-in-the-loop light-time delays, such as 
autonomous landing on a comet, and rover explorations on 
Mars. By adopting a unified architecture, we assure that the 
wide range of possibilities offered by these missions can be 
accommodated with a single MDS framework. For these 
reasons both flight and ground capabilities must be 
designed for a shared architecture. 
 
Theme: State & Models are Central 

System state and models form the foundation for 
information processing—MDS is founded upon a state-
based architecture, where state is a representation of the 
momentary condition of an evolving system and models 
describe how state evolves. Together, state and models 
supply what is needed to operate a system, predict future 
state, control toward a desired state, and assess 
performance. 
 
System states include device operating modes, device 
health, resource levels, attitude and trajectory, temperatures, 
pressures, etc, as well as environmental states such as the 
motions of celestial bodies and solar flux. Some aspects of 
system state are best described as functions of other states; 
e.g., pointing can be derived from attitude and trajectory.  
 
The totality of state representations, largely organized 
hierarchically within control systems, should provide a 
complete representation of the total system (“complete” in 
the sense of providing adequate knowledge of state for all 

control purposes). While there may be elements of a project 
outside the MDS purview, the external elements are 
described at least by their visible behavior. In all cases, state 
is accessible in a uniform way through state variables, as 
opposed to a program’s local variables.  
 
State evolution is described on state timelines, which are a 
complete record of a system’s history (“complete” to the 
extent that the state representations are adequate, and 
subject to storage limitations). State timelines capture 
current and past estimates, future predictions and plans, and 
past experience. State timelines provide the fundamental 
coordinating mechanism since they describe both 
knowledge and intent. This information, together with 
models of state behavior, provides everything needed to 
predict and plan, and it is available in an internally 
consistent form, via state variables. 
 
State timelines are also the objects of a uniform mechanism 
of information exchange between flight and ground, largely 
supplanting conventional engineering data traffic in both 
directions. For instance, telemetry can be accomplished by 
relaying state histories to the ground, and communication 
schedules can be relayed as state histories to the spacecraft. 
Timelines are relatively compact representation of state 
history, because states evolve only in particular and 
generally predictable ways. That is, they can be modeled. 
Therefore, timelines can be transported much more 
compactly than conventional time-sampled data. 
 

Figure 2. System state is the architectural centerpiece 
for information processing. State is a representation of 
the momentary condition of an evolving system. 



Theme: Explicit Use of Models 

Express domain knowledge explicitly in models rather than 
implicitly in program logic—Much of what makes software 
different from mission to mission is domain knowledge 
about instruments and actuators and sensors and plumbing 
and wiring and many other things. This knowledge includes 
relationships such as how power varies with solar incidence 
angle, conditions such as the fact that gyros saturate above a 
certain rate, state machines that prescribe safe sequences for 
valve operation, and dynamic models that predict how long 
a turn will take. Conventional practice has been to develop 
programs whose logic implicitly contains such domain 
knowledge, but this expresses the knowledge in a “hidden” 
form that is hard to validate and hard to reuse. In fact, it is 
often hard to discern even that some assumed domain 
knowledge has been applied. One might see in the code, for 
instance, that an important command is issued twice and 
gather nothing further from it. Behind this innocent act, 
however, is a presumed attempt to be sure the command 
takes effect, which implies further that commands are 
assumed unreliable, but not so much so that the likelihood 
of a second failed command is acceptably small. This leads 
one immediately into questioning the nature and validity of 
this assumed model, which is nowhere to be found. 
 
In contrast, MDS advocates that domain knowledge be 
represented more explicitly in inspectable models. Such 
models can be tables or functions or rules or state machines 

or any of several forms, as long as they separate the 
application-specific knowledge from the reusable logic for 
applying that knowledge to solve a problem. The task of 
customizing MDS for a mission, then, becomes largely a 
task of defining and validating models. 
 
Theme: Goal-Directed Operation 

Operate missions via specifications of desired state rather 
than sequences of actions—Traditionally, spacecraft have 
been controlled through linear (non-branching) command 
sequences that have been carefully designed on the ground. 
Moreover, most commands only specify actions to take — 
usually in an open loop manner, and often under 
assumptions of a particular prior state. Such design is 
difficult for two reasons. First, ground must predict 
spacecraft state for the time at which the sequence is 
scheduled to start, and that’s difficult to know with 
confidence because of flight/ground communication 
limitations (data rate and light-time delay). Second, in the 
event that the actual spacecraft state is significantly 
different than the predicted state at any time during 
execution, the sequence should be designed to fail rather 
than chance doing something harmful. This is usually 
accomplished outside the sequence in a separate concurrent 
fault monitoring system, which then steps in after the 
sequence is terminated to impose a substantially different 
model of control on the system — one generally 
incompatible with sequencing. 

Figure 3. This diagram emphasizes several architectural themes: the central role of state knowledge and models, goal-
directed operation, separation of state determination from control, and closed-loop control. 



 
MDS, in contrast, controls state⎯both flight and ground 
state⎯via “goals”. A goal is defined as a prioritized 
constraint on the value of a state variable during a time 
interval. The time interval is allowed to float, subject to 
temporal constraints. A goal differs from a command in that 
it specifies intent in the form of desired state. Such goal-
directed operation is simpler than traditional sequencing 
because a goal is easier to specify than the actions needed to 
accomplish it. Importantly, goals specify only success 
criteria; they leave options open about the means of 
accomplishing the goal and the possible use of alternate 
actions to recover from problems. A goal is a unifying 
concept that encompasses daily operations, maintenance 
and calibration, resource allocation, flight rules, and fault 
responses. Of course, all of this begs the question of who or 
what elaborates a goal into a program of actions, which 
brings us to goal-achieving modules and closed-loop 
control. 
 
Theme: Closed Loop Control 

Design for real-time reaction to changes in state rather 
than for open-loop commands or earth-in-the-loop 
control—Goal-directed operation implies closed-loop 
control because a goal, like a “set point” for a conventional 
controller, only specifies desired state, but not the actions 
needed to accomplish it. In MDS goals are issued to goal-
achieving modules (GAMs). A GAM controls state by 
comparing estimated state to desired state, then deciding 
how to change the state if necessary, then issuing either sub-
goals (with appropriate temporal constraints) to lower-level 
GAMs or issuing direct low-level actions (i.e., primitive 
actions). When a GAM accepts a goal it takes on the 
responsibility to either achieve the goal or report that it 
cannot. A GAM’s logic can be arbitrarily simple or 
sophisticated, but it must always keep the goal issuer 
informed about the goal’s status.  
 
Many GAMs achieve their goals by issuing sub-goals, 
creating a hierarchy of GAMs based on delegation of 
control. Naturally, the bottom layer of GAMs issues only 
primitive actions. Importantly, GAMs can report why they 
acted as they did in terms of differences between estimated 
state and desired state (both available on state timelines), 
and what sub-goals or commands were issued in response.  
 
A GAM is inherently self-checking, by definition, since it 
must monitor whether it is achieving each goal that it has 
accepted, keeping goal status up-to-date. During system 
testing this self-checking nature of GAMs considerably 
simplifies the job of analyzing test results; unexpected goal 
failures and unexpected goal successes (as when running 
fault scenarios) highlight areas for human inspection. 
Similarly, during mission operation, system behavior can be 
largely understood through the status of goals in a control 
hierarchy. 
 

Theme: Real-Time Resource Management 

Resource usage must be authorized and monitored by a 
resource manager—“Resources” are things like available 
battery energy, power, fuel, memory, thermal margin, etc. 
They are any state, in fact, that is affected by other states in 
a potentially conflicting way. Overuse of spacecraft 
resources can be disastrous, such as accidentally using too 
much power near the time of a critical orbit insertion 
maneuver, causing the spacecraft power bus to trip. For 
reasons like this ground operators have tended to be very 
conservative about resource usage, especially given their 
time-delayed knowledge of it. However, such conservative 
operation limits the amount of science data acquisition and 
return, especially during periods of great opportunity, such 
as during a fly-by or a short-lived science event. 
 
MDS avoids this kind of operational dilemma through a 
resource management mechanism that prevents overuse, 
even if a resource is accidentally oversubscribed. 
Specifically, resource-using activities are forced to obtain a 
“ticket” in order to use a given resource, much as one 
obtains a file descriptor in order to access a file. An activity 
must state to a resource manager the amount of resource 
and the time interval when it is needed, and the ticket is 
issued only if the usage does not conflict with any other 
higher-priority usage. Further, if measurements show that 
more of a resource is being used than was ticketed (such as 
might occur from an unexplained power drain), the manager 
can disable one or more tickets until an adequate margin is 
recovered. Because a resource manager always knows the 
available amount, other activities can be triggered to 
opportunistically use the resource, thereby increasing 
science data return.  
 
A resource manager is just another GAM, except that it 
deals in constraints on allowable states instead of 
constraints on the state itself. Issuing a ticket is the means 
by which it exercises this control. By treating resource 
management in this way it becomes a participant in the 
larger state coordination process, rather than a separate 
additional mechanism. 
 
Theme: Separate State Determination from State Control 

For consistency, simplicity and clarity, separate state 
determination logic from control logic—It’s not unusual to 
see software that co-mingles control logic with state 
determination logic, but this practice is usually a bad idea 
for three reasons. First, if two or more controllers each 
make their own private determination for the same state 
variable, their estimates may differ, potentially leading to 
conflicting control actions. Second, mixing two distinct 
tasks in the same module makes the code harder to 
understand and less reusable. Third, these two tasks are an 
ill fit in the same module because control has a hierarchical 
structure based on delegation whereas state determination 
has a network structure based on pathways of interaction 
mechanisms (electrical, thermal, etc.). 
 



Architecturally, MDS separates state determination from 
state control, coupled only through state variables. State 
determination is a process of interpreting measurements to 
generate state knowledge, and the process may combine 
multiple sources of evidence into a determination of state, 
supplied to a state variable as an estimate. Control, in 
contrast, attempts to achieve goals by issuing commands 
and sub-goals that should drive estimated state toward 
desired state. Keeping these two tasks separate simplifies 
design, programming, and testing, and also allows for 
independent improvements.  
 
An added benefit is to avoid the temptation often 
encountered in designs to warp an estimate to meet the 
objectives of control. For instance, in order to attenuate a 
controller’s superfluous reactions to noise, an estimate 
might be smoothed by lowering gains in the estimator. Not 
only does this link competing performance criteria in a 
single parameter, but now the system is deprived of 
accurate information about this state. Keeping state 
determination separate does not prevent this distortion, but 
it does express state knowledge in a public and uniform 
manner that permits a consistent pattern of testing designed 
to identify such breaches. 
 
Theme: Integral Fault Protection 

Fault protection must be an integral part of the design, not 
an add-on—Fault protection, which includes fault detection, 
localization, and recovery, has generally been treated as an 
add-on to a basic command & control system. As such, it 
was designed as an adjunct to the control system and 
usually arrived later in the project cycle. Such was the case 
for the Cassini attitude and articulation control system, and 
an interesting thing happened when fault protection was 
first enabled: numerous faults were detected in a control 
system that had already undergone a fair amount of testing. 
The Cassini AACS team learned more in that month than 
they had in the previous six months because they finally had 
independent detailed monitoring of system behavior. 

 

In MDS fault protection will be an integral part of the 
design⎯not an add-on⎯because it is an essential part of 
robust control and because it is extremely valuable during 
system testing. Goal-achieving modules in MDS need at 
least some minimum level of fault detection since they must 
report when an active goal is not being achieved. GAMs 
may also provide recovery strategies ranging from very 
simple to very sophisticated. In any case, this is always 
accomplished entirely within the same context and 
framework as normal operations, and it permits fault 
recovery that restores disrupted operations. Re-establishing 
a sequence after a fault is no longer a heroic effort. It is 
simply the way the system works all the time. 

Theme: Acknowledge State Uncertainty 

State determination must be honest about the evidence; 
state estimates are not facts—State values are rarely known 
with certainty, but a lot of software effectively pretends that 
they are by treating state estimates as facts. However, 
disastrous errors can result when control decisions are based 
on highly uncertain state. For example, it is probably 
unwise to perform a main-engine burn when the estimated 
position of the engine gimbals is below some minimum 
certainty. Uncertainty can arise in several ways, sometimes 
as conflicting evidence, sometimes through characteristic 
degradation of sensors, and sometimes during periods of 
rapid dynamic change. 
 
MDS takes the position that a level of certainty should 
accompany every state estimate. State determination must 
be honest about what the evidence is telling it. If there are 
two credible pieces of evidence that conflict, and there’s no 
timely way to reconcile the conflict, then the resulting state 
estimate must have an appropriately reduced level of 
certainty. Similarly, control must take into account the 
certainty level of the state estimates upon which it is basing 
a decision. If certainty drops below some context-specific 
minimum, then control must react appropriately, perhaps by 
attempting an alternate approach or by abandoning a goal 
entirely.  

 

Table 1. Fault protection is an integral part of 
design, not an add-on; its elements appear 
throughout the architectural elements. 

General: 
 event logging 
 assertion violations 
 out-of-memory 

Models: 
 error states 
 anomalous transitions 
 failure probabilities 
 failure modes 

 

State Determination: 
 estimate uncertainty 
 fault detection 
 diagnosis 
 health states 

State Control: 
 safety goals 
 reactions to abnormal 

states 
 reporting goal failures 
 replanning 

Figure 4. An architecture that doesn’t express the 
amount of uncertainty in state estimates prevents 
control systems from exercising caution during 
periods of higher-than-acceptable uncertainty. 

Damned 
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Uncertainty can be expressed in a number of ways, ranging 
from complete probability distributions to a simple 
enumeration of possible values. It isn’t essential that the 
representation be rigorously statistical; often a heuristic 
criterion will do. The only rule is to represent the 
uncertainty in state knowledge effectively. 
 
Theme: Separate Data Management from Data Transport 

Data management duties and structures should be 
separated from those of data transport—Flight/ground data 
management has long been tightly coupled with data 
transport issues, largely because such capabilities evolved 
from a time when flight processors were extremely limited. 
This resulted in an architecturally flattened implementation 
approach where, for example, application code was built 
around the CCSDS packet format. While such designs had 
some justification in the speed and memory constraints of 
earlier missions, the time has come to adopt a cleaner 
layered separation and prepare for the day when spacecraft 
are in fact nodes in an inter-planetary network. 
 
MDS clearly distinguishes between data management and 
data transport. The former elevates data products as entities 
in their own right, as objects and files that can be updated 
and summarized and aged, and that may or may not be 
destined for the ground or some other recipient. In fact, data 
management is a service that transcends the flight-ground 
divide so that data products are treated consistently in all 
places. Data transport, in contrast, can access any data 
product and serialize it for transport between flight and 
ground. Packet formats and link protocols are completely 
hidden from the level of data management. Decoupling 
these two capabilities keeps the design and testing simpler 
for each and allows for independent improvements. In this 
area MDS applies a layered organization [3]. 
 
The separation of data management and data transport also 
allows more intuitive management of the spacecraft to 
ground link.  For example, in Mars Pathfinder the majority 
of the telemetry data was images of the surface of Mars.  
These images were identified uniquely in the planning 
process, the commands to create them sent to the spacecraft 
(the commands included the image identifier), and the 
onboard software took the image and created a data product.  
The image data product consisted of the image (raw or 
compressed), the image identifier, the time the image was 
taken and other ancillary information such as the exposure 
time, filter wheel position, etc.  The onboard software then 
broke the image data product into CCSDS packets that were 
stored until sent as telemetry.  The data transport system, 
both on the spacecraft and on the ground, coordinated the 
retransmission of lost or missing elements of the packet 
stream.  When a missing packet was detected a request 
(command) could be sent to the spacecraft to effect the 
retransmission.  Unfortunately, this mechanism proved very 
hard to manage because the mapping from packet sequence 
number to image identifier was difficult to determine and 
because of the spacecraft/Mars/Earth alignment dictated a 

single telemetry session per operation.  Furthermore, the 
importance of a specific image to the overall science 
objectives would change based on the importance of the 
subsequent days’ activities. 
 
A further value in decoupling occurs due to the fundamental 
difference in nature of these two domains at the level of 
system coordination. In its fullest realization, space data 
transport must take its place as a peer in the larger data 
transport network covering everything from local hardwire 
communication within a system, to proximity links between 
sister vehicles, to lander-orbiter links at another planet, to 
links between planets. Spanning this vast range with its 
attendant physical exigencies makes quality of service a 
vital component of any data transport framework that is 
attempting to pull such a network together. Quality of 
service, in turn, must be a visible participant in the 
coordination of system activities, whether it be configuring 
radio equipment, pointing an antenna, or evaluating link 
characteristics. As prescribed, this is accomplished through 
goals. That is, quality of service is a state. 
 
Data management, too, resides in a physical realm that links 
its actions to the rest of the system and demands that it 
participate in coordination processes. In this case the status 
of data products (existence, content, size, importance, 
location, and so on) collectively comprise a set of states. 
Since the goal of most JPL missions is the collection of 
data, goals on these data product states become the key 
driver to most other mission activities. Interactions and 
trades between them can be coordinated entirely within the 
goal-directed architecture. 
 
Bringing the whole of system functionality within the fold 
would not be possible without the clean separation of data 
management from data transport. 
 
Theme: Join Navigation with Attitude Control 

Navigation and attitude control must build from a common 
mathematical base⎯Navigation and attitude control have 
been weakly coupled on most JPL missions because, in 
empty space, they operate on vastly different time scales 
and their dynamics usually don’t greatly affect each other. 
As such, navigation software and attitude control software 
have been largely independent development efforts and the 
interfaces between them have been ad hoc. In upcoming 
missions, however, the coupling becomes much tighter. For 
example, escape velocity near an asteroid is so small that 
firing thrusters for attitude control can significantly affect 
the trajectory of an orbiting spacecraft. Likewise, docking 
with another vehicle, as in a sample-return mission, requires 
navigation and attitude corrections on similar time scales. 
 
The approach that MDS is taking here, as in other areas, is 
to design common architectural mechanisms for common 
problems. Since the same forces influence navigation and 
attitude control, the architecture must allow for a common 



model; since both are solving geometry problems, the 
architecture must provide for common solvers. 
 
Theme: Instrument the Software 

Instrument the software to gain visibility into its operation, 
not just during testing but also during operation⎯Perhaps 
the most vexing problem that operators face during a 
mission emergency is in not having enough information 
about what’s happening inside the spacecraft to explain 
some anomalous behavior. Software developers face the 
same problem during system testing (albeit in less stressful 
circumstances) and they traditionally address the problem 
by adding temporary, ad hoc “instrumentation”, i.e., 
software instructions that output some internal state. Such 
instrumentation is often removed later, either because it 
generates too much output or because it reduces 
performance or because it bypasses the downlink 
subsystem, outputting directly to a testbed console. Such 
adding and removing of temporary code is messy at best 
and error-prone at worst. 
 
To address the need in a standard way⎯as Mars Pathfinder 
and Deep Space One did⎯MDS defines an “event logging 
framework” (ELF) that provides a standard mechanism for 
logging noteworthy events, whether generated on the flight 
side or ground side. Importantly, ELF allows operators to 
control the nature and amount of logging by controlling 
“entry policy” parameters such as event severity level, event 
IDs, and event reporting frequency. ELF reporting functions 
are designed for speed in discarding events disabled by the 
entry policy, so instrumentation (i.e., ELF calls) can 
generally be left in place, even in flight code. The net result 
is that software instrumentation is encouraged because it 
can be controlled at run time by ground operators and 
therefore can remain as a permanent part of the software, 
providing value not just during system testing but also 
during mission operations. 
 
Logically, ELF provides a specialized interface to Data 
Management and therefore capitalizes on its capabilities for 
accumulating value histories, for summarizing them, and for 
discarding old and/or less important data products in order 
to make room for new data products. 
 
Theme: Upward Compatibility 

Design interfaces to accommodate foreseeable advances in 
technology⎯MDS is intended to serve missions for many 
years to come, and during that time there will be numerous 
advances in software technology for control systems, fault 
detection & diagnosis, planning & scheduling, databases, 
communication protocols, etc. MDS must be prepared to 
exploit such technologies else it will become an obstacle 
rather than an enabler for increasingly challenging missions, 
but MDS also needs to maintain some architectural stability 
to amortize its cost over its missions. The strategy for 
achieving this centers around careful design of architectural 
interfaces, behind which a variety of technical approaches 
can be used. Specifically, MDS designers consult with 

researchers to understand how software interfaces may need 
to evolve, and then implement a restricted subset of an 
interface using current mission-ready technology. When the 
more advanced technology becomes mission-ready, they 
implement the fuller interface in an upward compatible 
manner, namely, in a manner that still works for interface 
clients that use the restricted subset. Thus, interface client 
software is not forced to change on the same schedule as 
interface provider software. 
 
The value of upward compatibility is powerfully illustrated 
in the history of IBM. In 1964 when IBM introduced the 
System/360 architecture, they transformed the computer 
industry with the first “compatible” family of computers. 
Software and peripherals worked virtually interchangeably 
on any of the five original processors, so customer 
investments were preserved when they upgraded to a more 
powerful processor. IBM continued to improve the 
technology over the years, but always within the 
System/360 architecture and its extensions. Although the 
MDS architecture applies to a much smaller marketplace, 
the benefits of upward compatibility make sense for MDS 
customers and providers. 
 

5. CUSTOMER BENEFITS 
The main value of MDS is that it should enable customer 
missions to focus on mission-specific design and 
development without having to create and test a supporting 
infrastructure. Customers will receive a set of pre-integrated 
and pre-tested frameworks, complete with executable 
example uses of those frameworks running on a simulated 
spacecraft and mission. These frameworks will be based on 
an object-oriented design described in Unified Modeling 
Language (UML) [5], the lingua franca of MDS software 
design and scenario description. 
 
As a project, MDS is balancing a long-term architectural 
vision against a near-term commitment to its first customer 
mission, Europa Orbiter, scheduled to launch in 2003. Such 
commitments help focus MDS design efforts on pragmatic, 
well-understood mechanisms for supporting the 
architectural themes. 
 

6. RELATED WORK 
Software Architecture 

As Shaw and Garlan have wisely observed, “good 
architectural design has always been a major factor in 
determining the success of a software system” [3]. Of four 
major categories of activities is software architecture, MDS 
is squarely in the category of “frameworks for specific 
domains”, in the same vein as DARPA’s domain-specific 
software architecture (DSSA) program [1,2]. The MDS 
frameworks are being described in Unified Modeling 
Language (UML) [4], while recognizing that it has 
limitations as an architecture description language, most 
notably for its lack of descriptions of connectors and 



interfaces as first-class entities and descriptions of 
hierarchical organization [5]. 
 
Shaw and Garlan also note that most systems typically 
involve a combination of architectural styles [3, chapter 2], 
and that’s certainly true of MDS, given its scope as a 
unified flight-ground control and data system. Perhaps the 
most conspicuous architectural styles in MDS are closed-
loop process control (in support of conventional feedback 
control systems as well as goal-achieving modules), state 
transition systems (in support of “reactive” discrete-state 
control systems), and hierarchical combination (reflecting 
delegation of sub-goals by goal-achieving modules). Also, 
the style of data abstraction and object-oriented 
organization pervades the MDS architecture. 
 
Remote Agent Project 

In a 1995 joint study between NASA Ames and JPL known 
as the New Millennium Autonomy Architecture Prototype 
(NewMAAP) a number of existing concepts for improving 
flight software were brought together in a prototype form. 
These concepts included goal-based commanding, closed-
loop control, model-based diagnosis, onboard resource 
management, and onboard planning. When the Deep Space 
One (DS-1) mission was subsequently announced as a 
technology validation mission, the NewMAAP project 
rapidly segued into the Remote Agent project [6]. In May 
1999 the Remote Agent eXperiment (RAX) flew on DS-1 
and provided the first in-flight demonstration of the 
concepts. The MDS project, which is populated with many 
people who worked on or with RAX, was established in 
April 1998 to define and develop an advanced multi-
mission data system that unifies the flight, ground, and test 
elements in a common architecture. That architecture is 
shaped with the themes described in this paper, some of 
which were explored and refined by the RAX experience. 
 
Altairis Mission Control System 

The Altairis Mission Control System (Altairis MCS) is a 
distributed, object-oriented commercial-off-the-shelf 
(COTS) satellite command and control system [7]. Altairis 
MCS is positioned as a ground-based mission control 
system built on a fully distributed CORBA-compliant 
architecture that can be distributed across networks of 
mixed UNIX and Windows NT computers. At a conceptual 
level, Altairis MCS shares some of the themes described in 
this paper. In particular, it emphasizes the central role of 
state and models in organizing a control system, with 
mission-specific extensions clearly separated from core 
software. Extensions primarily consist of finite state 
models—organized hierarchically—along with procedural 
scripts and data definition files. State transitions are 
composed of a required entry state, target state, executor, 
and latency. Operation is based on commanding of user-
defined state transitions, where a transition is immediately 
executed (transitions to the target state) only if the 
associated state machine is already in the required entry 
state. In comparison, MDS operation is based on issuance of 

goals, which are specifications of desired state for a time 
interval in the future, regardless of current state. In addition, 
temporally overlapping goals on the same state variable are 
allowed, as long as they are mutually compatible. 
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